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Abstract. The Hartree~Fock electron density has an important property that it is
identical to the exact density to first order in the perturbation theory. For the
neutral atoms from He (Z =2) to Lr (Z =103} in their ground state, we report an
accurate analytical approximation F(r) to the spherically averaged electron
density p(r) obtained by the numerical Hartree-Fock method. The present density
function F(r) is expressed by a linear combination of reasonable number (not more
than 30) of basis functions r* exp(— {;r), and has the following properties: {i) F{r) is
nonnegative, (ii) F(r) is normalized, (iii) F(r) reproduces the Hartree-Fock mo-
ments {r*> (k = —2 to + 6), (iv} F(0) is equal to p(0), (v) F'(0) satisfies the cusp
condition, and (vi} F(r) has the correct exponential decay in the long-range
asymptotic region.
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1 Introduction

An N-electron wave function ¥({r;, ¢;}) involves 3N spatial {r;} and N spin {o;}
coordinates of the electrons, and hence the direct interpretation of the wave
function is clearly formidable. However, the essential physical content of a wave
function can be embodied by the spin-reduced one-electron density function p(r),
which has only three spatial variables (see e.g. Ref. [1]). For this reason, many
researchers have studied the properties of p(r) and explored its applications to
physical and chemical problems (see e.g. Ref. [2]). Also there are continued efforts
in developing the density functional theory, which bypasses the wave function and
tries to determine the electron density directly (see e.g. Ref. [31).

When we work within the Hartree-Fock framework, the associated density
(i.e. Hartree-Fock electron density) has a special significance. If a Hartree-Fock
determinantal wave function is used as the zeroth-order wave function, the first-
order perturbation theory shows that the exact wave function does not contain any
singly substituted determinants due to the Brillouin’s theorem. This fact results in
that the first-order correction to the electron density is zero for the Condon-Slater
rules. In other words, the Hartree—Fock electron density is identical to the exact
density to first order in the perturbation theory.
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In recent years, various new properties of the spherically averaged electron
density p(r) have been reported (see e.g. Ref. [4] for a review) for ground-state
neutral atoms, based on the systematic examination of approximate density func-
tions constructed from Roothaan-Hartree~Fock wave functions of Clementi and
Roetti [5] and of McLean and McLean [6]. However, it has been unfortunately
pointed out that these Roothaan—Hartree-Fock wave functions include nontrivial
errors and inaccuracies [7-10].

In view of the theoretical significance of the Hartree—Fock electron densities
and their demand in various studies, we have decided to construct accurate and
reliable approximations F(r) to the Hartree-Fock densities p(¥) for the neutral
atoms from He (Z = 2) to Lr(Z = 103} in their ground state. We have employed the
numerical Hartree-Fock method, and the resultant Hartree—Fock densities, in the
form of numerical tables, have been fitted into simple analytical functions subject
to several constraints. Compared to the traditional method (see e.g. Ref. [11]) of
deriving electron density functions from Roothaan-Hartree-Fock wave functions,
the present method avoids some problems inherent to the use of one-electron basis
functions. An obvious difference is the number of terms required to represent
the electron density: In the case of Lr (Z = 103), for example, the Roothaan-
Hartree-Fock method needs approximately 15s12p1148f Slater-type functions to
achieve the accuracy of 0.0005 hartrees in the total energy. Then the associated
density function is given by a linear combination of 300 different terms of the form
of r" exp(— {;r). On the other hand, the present study shows that only 30 such
terms are sufficient for Lr to describe the electron density of the Hartree-Fock
quality. Moreover, the present analytical electron densities are designed to fulfill six
conditions, some of which are difficult to realize in the Roothaan-Hartree-Fock
procedure. The conditions imposed are (i) nonnegativity, (ii) normalization, (iii)
moments {r*> with k = —2 to + 6, (iv) value at the nucleus, (v) electron-nucleus
cusp relation, and (vi) long-range asymptotic behavior. The next section summar-
izes the theoretical ground of our constrained fitting procedure, and Sect. 3 gives
the computational details. The results are presented and discussed in Sect. 4, and
simple applications are given in Sect. 5. Hartree atomic units are used throughout

this paper.

2 Theoretical ground
2.1 Spherically-averaged electron density

For a normalized N-electron wave function ¥({x;}), the (spin-reduced) three-
dimensional electron density p(r) is defined by

p(=N f[ Y(r,0,%,5, ..., xy)* | dodx, ... dxy, (1)

X; = (I‘g, O'i), F; = (?5, Q‘)

Then the spherically averaged electron density p(r) is obtained by integrating p(#)
over the angular variable @,

o) = - f p(r) A2 @
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By definitions (1) and (2), p(r) is normalized to the number of electrons N,

411:Jmp(r)r2 dr=N. (3)

o]

For atomic Hartree-Fock wave functions composed of one-electron orbitals
Ynem(1) = Ro(r) Y. (€), 4)
the spherically averaged density p(r) can be written, due to the orthonormality of
the spherical harmonics Y,,(Q), as
x
4n
where N,, denotes the number of electrons in the subshell specified by the quantum

numbers n and ¢, and ¥, N,, = N.
For a neutral atom with nuclear charge Z(= N), we define a function g(r) by

p(r) = Z lvnt’ | Rnt’(r) I 25 (5)

o) = plr) + 550, ©

where the prime (') means differentiation with respect to r. The function g(r)
satisfies g(0) =0 and g( o0) =0, where the first relation is nothing but the elec-
tron—nucleus cusp condition [12,13] and the second relation comes from the
long-range asymptotic behavior [14—16] of the Hartree-Fock orbitals which leads
that p(r) ~ exp(—+/ — 8eyr) for a large r, with ¢, being the orbital energy of the
highest occupied Hartree—Fock orbital.

Using the function g(r), we can express [17, 18] the electron density p(r) as

p(r) = p(0) exp(—2Zr) + p(r), (7a)
p(r) =2Z exp(—2Zr) Jr g(t) exp(2Zt) dt. (7b)

Equations (7a,b) are equivalent to Eq. (6) and do not add new information
mathematically. Nevertheless, Eq. (7) is useful for us to infer approximate func-
tional forms of p(r). Equation (7b) and the properties p(0) = j( oo} = 0 suggest that
the unknown part p(r) of the electron density p(r) may be adequately expanded by
a set of “density basis” functions

Jr) =r¥exp(= ), (i=1,...,Np) ®

where n; > 0 and {; > 0. Apart from the terms arising from 1s type functions, the
form of Eq. (8) also appears in approximate electron densities constructed (see, e.g.,
Ref. [11]) by the Roothaan procedure with Slater-type or hydrogenic basis func-
tions for one-electron orbitals.

2.2 Analytical approximation

We wish to approximate a numerically determined Hartree-Fock electron density
p(r) by an analytical function F(r),

P = F) = o) + 3. cifilr) (%2)
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where

Jo(r) = p(0) exp(—2Zr), (9b)

fi(r) is given by Eq. (8), and {¢;} are mixing coefficients. The approximation (9a)
consists of Ny +1 terms and includes linear {¢;} and nonlinear {n;, {;} parameters
to be determined.

We impose the following conditions on the function F(r):
(i) Non-negativity:

F(r)=0for 0 <r < o0 (10a)
(i) Normalization:
4n f: F(ryr*dr = N. (10b)
(iiij) Moments:
4n j: F(r)yr**2dr = (5, (10¢)

where

rky E4Tcﬁmp(r)r"+2 dr (k=—2,..., +6)

0

are the Hartree-Fock moment values. A special case of k =0 includes the normal-
ization (10b), i.e, {r°> = N.
(iv) Value at the nucleus:

F(0) = p(0). (10d)

This condition is automatically fulfilled since we have chosen n; > 0 in our density
basis function (8).
(v) Cusp:

F'(0) = — 2ZF(0). (10¢)

The cusp condition is exactly satisfied if we restrict n; > 1 in Eq. {8).

(vi) Long-range behavior:
F(r) ~ exp(— ./ — 8eur) (10f)

for a large r. This requirement is satisfied, if the smallest exponent
{inin = min{(;}fll of the functions (8) is taken to be (., =/ — 8éu.

Since the conditions (iv)—(vi} can be satisfied by an adjustment of some para-
meters in our basis functions (8), we determine the mixing coefficients {¢;} and the
remaining parameters in the analytical expansion (9a) by minimizing an error
measure 4,

A4=4rn Jm [6(1)]*r* dr, (11a)

5
o(r) = pr) — F(r) = p(r) — _; ¢ fir), (11b)

p(r) = p(r) — fo(r) (1tc)
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subject to the constraints (10c). Following the Lagrange method of undermined
multipliers, we now define a function

+6

d=4-% zk{ztnrp(r)rk”dr—(rb}. (12)

k=—-2 0

From 04/dc; =0 and 84/84, =0, we obtain a set of N; + 9 linear equations which
determines the optimum values of the mixing coefficients (linear parameters) {c;}
for a given set of values {n;, {;; {r*>} and a given number N; of expansion terms:

Ny ® +6 © 0
2 Z ¢ L O firrrdr— 3 A L fir)yr**t2dr =2L p(r) fi(r)r? dr

k=-2

(i=1,2,..,N), (13a)
y e b pO)(k +2)!

P L J;(r)r*+2dr=<:n>—‘”{(z)é)m) (13b)

(k=—2—1,..., +6)

Since we used 9 moment values as constraints, Eqs. (13a,b) in general will give
meaningful solutions {c;} only when N;>9. We need a specification of the
remaining nonlinear parameters {n;, {;}. Details of the present determination of
these parameters will be described in the next section.

3 Computational details

Numerical Hartree-Fock calculations have been performed for the neutral atoms
from He (Z =2) to Lr (Z =103) in their ground state, using a modified and
enhanced version of MCHF72 program [19]. The electronic configurations and
terms examined in this study are summarized in Table 1 together with the asso-
ciated total energies E, the highest occupied orbital energies ¢, and the p(0) values.
Based on Eq. (5), the Hartree—Fock density p(r;) at the radius r; has been generated,
where the radial variable r was first transformed to a new variable x,

1
P = Z exp(x), (14a)
and then discretized into N, points according to the formula
1
rj ='Zexp[xmin + h(j““l)] (] =1:27 7Np)' (14b)

The discretization parameters were taken to be N, =2° =512, x,,;, = — 6.0, and
h =0.03, based on a careful examination of the stability of the numerical proced-
ures involved in MCHF72. The above choice of the parameter values covers the
rrange of 1.2x 1077 <r < 5.6 x10° for He and of 24 x107° <r < 1.1 x 102 for
Lr, for example. Other Hartree—Fock properties, such as orbital energies ¢,
moments {r*}, densities p(0), p'(0), and p”(0), were calculated as well. The present
density exactly satisfies the cusp relation p(0) = — 2Zp’ (0), since the orbital cusp
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condition [207 is imposed on in the construction of the numerical Hartree~-Fock
orbitals. However, the present p”(0) values have been found to include the
maximum 0.05% inaccuracy, when hydrogenic species were used as benchmark.

As a consequence of the discretization of the radial variable r in the numerical
Hartree-Fock method, all the integrals over r in Eqgs. (13a,b) are replaced with
the corresponding summations over discrete N, radial points. For example, the first
integral in Eq. (13a) becomes

) N,
JO finfier*dr=h Z S firdre, (15)

where {r,} are given by Eq. (14b). Note that dr =r dx.

The powers {n;} in the density basis functions (8) can be either integer or
noninteger numbers, but we restricted them to be a common integer for the
simplicity of our fitting procedure and for the greater tractability of resultant
analytical approximations. For a few selected atoms, we tested three choices
n; =1, 2, and 3. A small error (about 0.01%) appeared in the cusp relation when we
used n; =1, while a large exponent appeared when we used n; = 3. Thus, we
adopted and fixed n; = 2 for all i in the present work, and therefore the resultant
function F(r) exactly satisfies the cusp condition (10e).

For the exponents {{;} of the basis functions (8), we restricted that the minimum
value {, is equal to / — 8¢, for the long-range requirement (10f). Moreover, we
added a condition that the exponents constitute a geometrical series in order to
avoid numerical linear dependence among the basis functions. Thus,

G=Cland™" (=12,.., Ny) (16a)

{min =~/ — 8&n, (16b)

where « is the spacing parameter of the two neighboring exponents. By this choice
for the exponent values, we have only one nonlinear parameter o to be determined,
and we employed the conjugate directions method [21] to obtain the optimum
o which minimizes 4.

Finally, we note that the nonnegativity of the F(r) function was checked for all
the {r;} radial values during the optimization of the parameter o. We have also
recorded the maximum absolute deviation é,,,, = max{|d(r;)| }j"; , and its location
Fmax fOT the optimum F(r).

4 Results and discussion

Following the procedure described in the previous sections, the optimum linear
{c;} and nonlinear o parameters have been determined for the analytical approxi-
mation F(r) of the numerical Hartree-Fock density p(r). In order to avoid large
numbers and to assign the same relative accuracies to all the 102 atoms from He
to Lr, the normalization {r°) =1, instead of N, is applied to all the quantities
discussed in this section. The number N; of expansion terms has been taken to be
the minimum value which satisfies the criterion 4 < 1 x 1071, Several different
initial values have been examined for the parameter a.

Table 2 exemplifies the final result for the Cs atom (Z = 55), which approxim-
ately occupies the center of the 102 atoms examined in this study and yet involves
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Table 2. Analytical Hartree~Fock electron density for the Cs atom. F(r) and

p(¥) are normalized to unity

Z =355

N; =26
o = 1.224798108d + 000
A =6.128660785d — 011

Bax = 9.751466567d — 004
Frnax = 3.820655840d — 003
Brman/ Prmes) = 6.938796398d — 007

ci/p(0)

3

G

O 1 O\ W B W D e D

[
O D 00~ LA B W N = O

21
22
23
24
25
26

1.0600000000d + 000
7.568725643d —008
—2.4965719%4d —007
1.434597444d — 006
—1.080391408d — 005
6.246205057d — 005
—2.620180803d — 004
1.219741477d —003
— 3.691941653d — 003
1.022050760d — 002
— 3.134609636d — 002
9.318892188d — 002
— 1.154370496d — 001
2.576536190d — 001
—1.264433315d +000
1.768140754d + 000
6.774677143d +000
— 1.447161158d + 001
5.461208312d + 000
—1.692428476d -+ 001
1.078346367d + 002
— 1.089350638d + 001
—2.116646042d + 001
—4.042828753d + 001
—2.778205573d + 001
4.518080514d + 001
—2.130846007d + 001

BO 12 B2 D0 DN N2 B2 D2 T NN DN N2 DD R RN NN NN RN D

™

1.1000000004 -+ 002
9.946589365d — 001
1.218256384d + 000
1.492118114d +000
1.827543442d + 000
2.238371750d + 000
2.741553485d +000
3.357849521d + 000
4.112687740d +000
5.037212163d +000
6.169567927d -+ 000
7.556475124d + 000
9.255156435d + 000
1.133569809d -+ 001
1.388394157d +001
1.700502537d +001
2.082772290d +001
2.550975560d + 001
3.124430039d + 001
3.826796001d +001
4.687052501d +001
5.740693036d + 001
7.031189965d +001
8.611788170d + 001
1.054770186d +002
1.291880528d + 002
1.582292826d + 002

F(0) = 2138.644636

(error == 0.00000%)

123

F'(0) = — 235250.9099
F7(0) = 2593317049

(error = 0.00000%)
(error = 0.04582%)

the density contributions both from the tight (g4, = — 1272.768831) and loose
(265 = — 0.123668) atomic orbitals. For the Cs atom, we need 27 (=26 + 1) expan-
sion terms for F(r). The largest local deviation ., = 9.8 x 10~ * is observed at
Fmax = 3.8 x 1073, which is very close to the nucleus. At a first glance, the 8.,
value may not appear enough small, but when compared with the value of the
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original electron density p(r,,) at this point, the relative error is only
Rinax = Omax/ P(Timax) = 6.9 x 1077, The values F(0), F'(0), and {r*) (k = —2 to + 6)
coincide exactly with those from the numerical Hartree—Fock method. The F”(0)
value has an error of 0.046%, but it is within the uncertainty of the numerical
Hartree~Fock value.

The overall performance of the present construction of analytical Hartree-Fock
electron densities is summarized in Table 3. The required number N; of expansion
terms increases generally with increasing Z, but it is not regular. Apart from the
Jfolr) term, the first-, second-, third-, fourth-, fifth-, and sixth-row atoms require,
roughly speaking, 15, 19, 22, 25, 27, and 29 expansion terms, respectively. We stress
the compactness of the present expansion. Though a special exception is seen for
N; =18 of the Rb atom (Z = 37), we could not find any reasonable explanation.
When Z increases, the maximum local error §,,,, increases from the order of 1073
to the order of 1073, but its relative value R,,,, is almost constant and of the order
of 107%~107". The radius r,,, where 4., appears is very small. All the relative
errors 3F”(0) (in percent) of the F”(0) values are within the uncertainty of the
numerical Hartree-Fock value except for He, Be, and C atoms. The optimum value
of the spacing parameter « for the exponents is around 1.2 for all the atoms
examined. The (,;, and (., values are also given in the table to show the
distribution of exponents for each atom, where {,,;, has been determined by Eq.
(16b). The {nay, value is specified by a and Ny through Eq. (16a), but we observe an
empirical relation {,,.,/Z = 3 except for the He atom. Though the expansion
coefficients {¢;} are not shown in the table, we have confirmed that the coefficient
of the term with the smallest exponent is positive for all the atoms; this guarantees
that the present density function F(r) is positive for a very large r.

We have also compared the electron densities F(r) and p(r) as a function of 7.
Since the two density curves are essentially superimposed, we have plotted in Fig. 1
the difference 6(r) = F(r) — p(r) for the group 1 atoms Li, Na, K, Rb, Cs, and Fr.
(The result for Li is superimposed on the horizontal axis in the present scale of the
figure.) We observe that the deviation occurs mainly in a region close to the nucleus
and is extremely small compared with the p(0)/N value given in Table 1.

5 Simple applications

Using an approximate electron density constructed from the Clementi—Roetti wave
functions [5], Galvez and Porras [17] examined the sign of the function g(r) for the
neutral atoms He through Xe. Since the Clementi—Roetti functions do not satisfy
the cusp condition, a small region where g(r) < 0 was found in the vicinity of the
nucleus for some atoms. However, Galvez and Porras have conjectured [17, 18]
that g(r) = O for the Hartree-Fock electron density and employed the presumed
nonnegative property of g(r) to derive various inequalities among p(0) and vy, As
an application of the analytical Hartree—Fock electron density developed in this
study, we have examined the sign of the function g(r) derived from F(r). We have
confirmed that the above conjecture is correct for all the ground-state neutral
atoms not only from He to Xe but also from Cs to Lr.

Angulo et al. [22] examined the convexity (i.e. nonnegativity of the second
derivative p”(r) for 0 <r < o) of the spherically averaged electron density p(r) for
the neutral atoms with Z < 54, also using the approximate density functions
constructed from the Clementi~Roetti wave functions. They concluded [22] that
the atoms with Z = 1,2, 7-15, and 33-44 have a convex electron density, whereas
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the atoms with Z = 3-6, 16-32, and 45-54 have a nonconvex density. Since the
second derivative is expected to be highly sensitive to the accuracy of the elec-
tron density employed, we have re-examined the convexity based on the present
Hartree-Fock density F(r). Fortunately, we have confirmed that the above-
mentioned classification of the atoms with the convex and nonconvex densities
is correct. Additionally, we have found that all the heavier atoms with 55 < Z
< 103 have a nonconvex electron density in their ground state. However, the
details of the properties of the nonconvex densities summarized in Ref. [22] have
been found to be insufficiently accurate.

6 Summary

For the neutral ators from He (Z = 2) to Lr (Z = 103) in their ground state, the
numerical Hartree-Fock electron density has been fitted into a simple analytical
function, subject to several physically important constraints. High accuracy of the
resultant approximation has been confirmed. We hope the present analytical
expression of the Hartree—Fock electron density would be useful for various studies
on the electron density and its applications. Full details of the present results for
the 102 atoms are available upon request to the author at the e-mail address:
koga@muroran-it.acjp.
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